【题目描述】
一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,.和#,前者表示可以通行后者表示不能通行。同时当Extense处在某个格点时,他只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Extense想要从点A走到点B,问在不走出迷宫的情况下能不能办到。如果起点或者终点有一个不能通行(为#),则看成无法办到。
【输入描述】
第1行是测试数据的组数k,后面跟着k组输入。每组测试数据的第1行是一个正整数n (1 ≤ n ≤ 100),表示迷宫的规模是n * n的。接下来是一个n * n的矩阵,矩阵中的元素为.或者#。再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb行, 第lb列。注意到ha, la, hb, lb全部是从0开始计数的。
【输出描述】
k行,每行输出对应一个输入。能办到则输出“YES”,否则输出“NO”。
【样例输入】
2
3
.##
..#
#..
0 0 2 2
5
.....
###.#
..#..
###..
...#.
0 0 4 0
【样例输出】
YES
NO
【题目分析】
(1)深搜无疑,二维数组+深搜基本可以搞定
(2)结束条件不在是遍历完整个迷宫输出结论,而是能到达B点就直接输出yes
(3)如果中间计算不愿意操作字符,就转换成数字,用1表示” . ” 用0表示“#” ,1表示可以同行,0表示不能同行。
【参考代码1】
#include<stdio.h> #include<string.h> int flag;//作为是否能够到达目的点的标记 int n,startx,starty,endx,endy;//起始点与目的点的座标 int map[101][101]; //存储图 int visit[101][101]; //记录点是否已经访问过 void dfs(int x,int y) //深度优先搜索 { int next[4][2]={{1,0},{-1,0},{0,1},{0,-1}};//定义的四个方向 int i,j; for(i=0;i<4;i++)//从当前点出发往四个方向去探寻 { int nextx=next[i][0]+x; int nexty=next[i][1]+y;// 实现点的四个方向的移动 if(nextx<0||nextx>n-1||nexty<0||nexty>n-1)// 如何移动时越界了则因不符条件而退出此次移动 { continue; } if(visit[nextx][nexty]==0&&map[nextx][nexty]==1)// 若移动到的点是尚未访问过的且是可以去的点,那么再进行下一步点的深度优先搜索 { visit[nextx][nexty]=1; //访问过后标记为1 dfs(nextx,nexty); //以新的点再次继续往深处搜索 } if(nextx==endx&&nexty==endy)//如果到达了目的点,即可以宣布找到退出了 { flag=1; break; } } } int main() { char c; int i,j,k; scanf("%d",&k); while(k--) { flag=0; memset(visit,0,sizeof(visit));//由于是多样例,所以记得每次都需要对上一次的记录加以清除 scanf("%d",&n); getchar();//这个超级重要,否则由于字符输出原理而产生bug足以气死你 for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%c",&c); if(c=='@') map[i][j]=0; else if(c=='.') map[i][j]=1; //将字符转变为数字更方便我们的操作 } getchar(); //同样的,不要忘记字符操作原理 } scanf("%d %d %d %d",&startx,&starty,&endx,&endy); if(map[startx][starty]==0||map[endx][endy]==0) { //这个极容易被忽视,如果出发点或者目的点本就是不可以走的,那就没必要进行搜索了,当即就可以宣布失败 printf("NO\n"); continue; } visit[startx][starty]=1;//出发点首次已被访问 dfs(startx,starty); // 从当前开始搜索 if(flag) printf("YES\n"); //根据标记输出结果 else printf("NO\n"); } return 0; }
返回目录:题解目录